首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43986篇
  免费   1172篇
  国内免费   2448篇
  2023年   1315篇
  2022年   932篇
  2021年   898篇
  2020年   783篇
  2019年   1319篇
  2018年   1107篇
  2017年   973篇
  2016年   526篇
  2015年   629篇
  2014年   1395篇
  2013年   1964篇
  2012年   1161篇
  2011年   2589篇
  2010年   1432篇
  2009年   1673篇
  2008年   1793篇
  2007年   1907篇
  2006年   1691篇
  2005年   1626篇
  2004年   1549篇
  2003年   1329篇
  2002年   1398篇
  2001年   1637篇
  2000年   1566篇
  1999年   1610篇
  1998年   1561篇
  1997年   1408篇
  1996年   895篇
  1995年   613篇
  1994年   501篇
  1993年   369篇
  1992年   338篇
  1991年   288篇
  1990年   178篇
  1989年   220篇
  1988年   169篇
  1987年   172篇
  1985年   389篇
  1984年   840篇
  1983年   734篇
  1982年   649篇
  1981年   584篇
  1980年   538篇
  1979年   511篇
  1978年   338篇
  1977年   302篇
  1976年   291篇
  1975年   260篇
  1974年   213篇
  1973年   193篇
排序方式: 共有10000条查询结果,搜索用时 859 毫秒
1.
Many of the world's most important food crops such as rice, barley and maize accumulate silicon (Si) to high levels, resulting in better plant growth and crop yields. The first step in Si accumulation is the uptake of silicic acid by the roots, a process mediated by the structurally uncharacterised NIP subfamily of aquaporins, also named metalloid porins. Here, we present the X-ray crystal structure of the archetypal NIP family member from Oryza sativa (OsNIP2;1). The OsNIP2;1 channel is closed in the crystal structure by the cytoplasmic loop D, which is known to regulate channel opening in classical plant aquaporins. The structure further reveals a novel, five-residue extracellular selectivity filter with a large diameter. Unbiased molecular dynamics simulations show a rapid opening of the channel and visualise how silicic acid interacts with the selectivity filter prior to transmembrane diffusion. Our results will enable detailed structure–function studies of metalloid porins, including the basis of their substrate selectivity.  相似文献   
2.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   
3.
The genus Fusarium contains many fungal species known to be pathogenic to animals and plants alike. One species complex within this genus, the Fusarium solani species complex (FSSC), is of particular concern due to its high numbers of pathogenic members. FSSC members are known to contribute significantly to plant, human and other animal fungal disease. One member of the FSSC, Fusarium keratoplasticum, is of particular ecological concern and has been implicated in low hatching success of endangered sea turtle eggs, as well as contribute to human and other animal Fusarium pathogenesis. Species-specific primers for molecular identification of F. keratoplasticum currently do not exist to our knowledge, making rapid identification, tracking and quantitation of this pathogenic fungus difficult. The objective of this study was to develop primers specific to F. keratoplasticum that could be applied to DNA from isolated cultures as well as total (mixed) DNA from environmental samples. RPB2 sequence from 109 Fusarium isolates was aligned and analysed to determine nucleotide polymorphisms specific to F. keratoplasticum useful for primer design. A set of primers were generated and found to be effective for identification of F. keratoplasticum from total DNA extracted from sand surrounding sea turtle nesting sites.  相似文献   
4.
 This paper deals with the use of cladistic methods and cladograms in phylogeny reconstruction in plant groups containing numerous taxa. How accurate are the cladograms as to details? Accuracy tests at the level of details require an independently known phylogeny, which excludes most plant groups, but such tests can be carried out in domesticated and experimental plant groups which have documented pedigrees. Four such tests are known and are presented here: a new case in Gilia and three previously published cases in Avena, Hordeum, and Helianthus. The four cases include domesticated and experimental plants, use of morphological and molecular evidence, and presence of dichotomous as well as reticulate phylogenies. The cladograms of the four plant groups all differ in significant details from the known pedigrees. These results are discussed in relation to problems of interpretation of cladograms. Received March 21, 2000 Accepted August 16, 2001  相似文献   
5.
激光光漂恢复技术测定了异硫氰基荧光素标记的林蛀卵表面分子在第一次卵裂前的运动。发现固着在玻片上的剥离“细胞膜”的分子运动形式为扩散。扩散系数为(4.6±1.3)×10~(-12)cm~2/s,可动部份为15%。完整卵子上的分子运动形式为流动。细胞膜在不停地流动着。它可能起着协助细胞质运动的作用。细胞膜流动的速度随时间而异,卵裂前不久,在大多数的卵子上,出现两个流动较慢的谷,少数细胞只测到一个谷。这可能与光漂起始时间,光斑与未来分裂沟的距离,和卵子间的差异有关。也讨论了这种速度变化与表面收缩波的关系。  相似文献   
6.
(+)-2,9 alpha-Dimethyl-5-(m-hydroxyphenyl)morphan is the only phenylmorphan analog whose affinity for opioid kappa-receptors is greater than its affinity for opioid mu-receptors. Pharmacologically, the compound is a pure opioid antagonist devoid of agonist activity in in vivo assays of antinociception. The absolute configuration of the compound has been determined to be (1R,5S,9R) from an X-ray crystallographic study of the chloride salt. Thus, the absolute configuration corresponds to that of the atypical opioid agonist (-)-phenylmorphan while the weak atypical agonist (-)-2,9 alpha-dimethyl-5-(m- hydroxyphenyl)morphan corresponds to the potent morphine-like (+)-phenylmorphan. The preferred orientations of the phenyl ring for the two stereoisomers were determined using the molecular mechanics program MM2-87 and found to vary from that of the two parent compounds. The atypical properties of the two 9 alpha-methyl analogs is consistent with an opioid ligand model which proposes that morphine-like properties require a particular range of phenyl orientations. There was good agreement between the structure obtained from X-ray crystallography and computed with the MM2-87 program.  相似文献   
7.
Spinosyns A and D are the active ingredients in an insect control agent produced by fermentation of Saccharopolyspora spinosa. Spinosyns are macrolides with a 21-carbon, tetracyclic lactone backbone to which the deoxysugars forosamine and tri-O-methylrhamnose are attached. The spinosyn biosynthesis genes, except for the rhamnose genes, are located in a cluster that spans 74 kb of the S. spinosa genome. DNA sequence analysis, targeted gene disruptions and bioconversion studies identified five large genes encoding type I polyketide synthase subunits, and 14 genes involved in sugar biosynthesis, sugar attachment to the polyketide or cross-bridging of the polyketide. Four rhamnose biosynthetic genes, two of which are also necessary for forosamine biosynthesis, are located outside the spinosyn gene cluster. Duplication of the spinosyn genes linked to the polyketide synthase genes stimulated the final step in the biosynthesis — the conversion of the forosamine-less pseudoaglycones to endproducts. Duplication of genes involved in the early steps of deoxysugar biosynthesis increased spinosyn yield significantly. Journal of Industrial Microbiology & Biotechnology (2001) 27, 399–402. Received 31 May 2001/ Accepted in revised form 09 July 2001  相似文献   
8.
Bidens cordylocarpa is a high polyploid species restricted in distribution to stream sides in the mountains of Jalisco, Mexico. The morphologically enigmatic species was originally described as a member of the genus Coreopsis, but later transferred to Bidens, largely because the involucral bracts appear most similar to Bidens. Characters of the cypselae, often useful in generic placement, are of no value for this species because the fruits have features not detected in either Bidens or Coreopsis. Sequences from the internal transcribed spacer region of nuclear ribosomal DNA (ITS) were used to assess the relationships of Bidens cordylocarpa. The molecular phylogeny places B. cordylocarpa in a strongly supported clade of Mexican and South American Bidens, and provides more definitive evidence of relationships than morphology, chromosome number, or secondary chemistry. Molecular, morphological, and chromosomal data suggest that B. cordylocarpa is an ancient polyploid, perhaps the remnant of a polyploid complex. Received August 28, 2000 Accepted February 11, 2001  相似文献   
9.
An upsurge in African horse sickness (AHS) in the Eastern Cape, South Africa, from 2006 led to an epidemiological reassessment of the disease there. Light trapping surveys carried out near horses, donkeys and zebras in 2014–2016 collected 39 species of Culicoides midge (Diptera: Ceratopogonidae) that are potential vectors of AHS. To establish if these midges fed on equids, DNA sequences were obtained from the gut contents of 52 female midges (35 freshly blood‐fed, 13 gravid and four parous), representing 11 species collected across 11 sites. Culicoides leucostictus fed on all three equids. Culicoides bolitinos, Culicoides imicola and Culicoides magnus fed on both horses and donkeys. Culicoides onderstepoortensis fed on donkeys, and Culicoides similis and Culicoides pycnostictus fed on zebras. Bloodmeals from cows, pigs, warthogs, impalas and a domestic dog were also identified in various species, but none of the midges tested had fed on birds. These results contribute to knowledge of the vectorial capacity of several species of Culicoides with regard to AHS in the Eastern Cape and point to potential reservoir hosts, of which donkeys, zebras and domestic dogs have previously been found to harbour AHS. Blood‐fed midges were also obtained throughout winter, indicating the potential for endemic AHS in the province.  相似文献   
10.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号